FINITELY MANY SMOOTH d-POLYTOPES WITH n LATTICE POINTS
نویسندگان
چکیده
We prove that for fixed n there are only finitely many embeddings of Qfactorial toric varieties X into P that are induced by a complete linear system. The proof is based on a combinatorial result that implies that for fixed nonnegative integers d and n, there are only finitely many smooth d-polytopes with n lattice points. We also enumerate all smooth 3-polytopes with ≤ 12 lattice points.
منابع مشابه
FEW SMOOTH d-POLYTOPES WITH N LATTICE POINTS
We prove that, for fixed N there exist only finitely many embeddings of Q-factorial toric varieties X into P that are induced by a complete linear system. The proof is based on a combinatorial result that for fixed nonnegative integers d and N , there are only finitely many smooth d-polytopes with N lattice points. The argument is turned into an algorithm to classify smooth 3polytopes with ≤ 12...
متن کاملProjecting Lattice Polytopes Without Interior Lattice Points
We show that up to unimodular equivalence there are only finitely many d-dimensional lattice polytopes without interior lattice points that do not admit a lattice projection onto a (d− 1)-dimensional lattice polytope without interior lattice points. This was conjectured by Treutlein. As an immediate corollary, we get a short proof of a recent result of Averkov, Wagner &Weismantel, namely the fi...
متن کامل3-Dimensional Lattice Polytopes Without Interior Lattice Points
A theorem of Howe states that every 3-dimensional lattice polytope P whose only lattice points are its vertices, is a Cayley polytope, i.e. P is the convex hull of two lattice polygons with distance one. We want to generalize this result by classifying 3-dimensional lattice polytopes without interior lattice points. The main result will be, that they are up to finite many exceptions either Cayl...
متن کاملLattice 3-Polytopes with Few Lattice Points
This paper is intended as a first step in a program for a full algorithmic enumeration of lattice 3-polytopes. The program is based in the following two facts, that we prove: • For each n there is only a finite number of (equivalence classes of) 3polytopes of lattice width larger than one, where n is the number of lattice points. Polytopes of width one are infinitely many, but easy to classify....
متن کاملClassifying Smooth Lattice Polytopes via Toric Fibrations
We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2d+ 1. This gives a sharp answer, for this class of polytopes, to a question raised by V. V. Batyrev and B. Nill.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013